作者从概率统计和编程两方面入手,由浅入深地指导读者如何对实际数据进行贝叶斯分析。全书分成三部分,第一部分为基础篇:关于参数、概率、贝叶斯法则及R软件,第二部分为二元比例推断的基本理论,第三部分为广义线性模型。内容包括贝叶斯统计的基本理论、实验设计的有关知识、以层次模型和MCMC为代表的复杂方法等。同时覆盖所有需要用到非贝叶斯方法的情况,其中包括:t-检验,方差分析(ANOVA)和ANOVA中的多重比较法,多元线性回归,Logistic回归,序列回归和卡方(列联表)分析。针对不同的学习目标(如R、BUGS等)列出了相应的重点章节;整理出贝叶斯统计中某些与传统统计学可作类比的内容,方便读者快速学习。本中提出的方法都是可操作的,并且所有涉及数学理论的地方都已经用实际例子非常直观地进行了解释。由于并不对读者的统计或编程基础有较高的要求,因此本书非常适合社会学或生物学研究者入门参考,同时也可作为相关科研人员的参考书。
作者从概率统计和编程两方面入手,由浅入深地指导读者如何对实际数据进行贝叶斯分析。全书分成三部分,第一部分为基础篇:关于参数、概率、贝叶斯法则及R软件,第二部分为二元比例推断的基本理论,第三部分为广义线性模型。内容包括贝叶斯统计的基本理论、实验设计的有关知识、以层次模型和MCMC为代表的复杂方法等。同时覆盖所有需要用到非贝叶斯方法的情况,其中包括:t-检验,方差分析(ANOVA)和ANOVA中的多重比较法,多元线性回归,Logistic回归,序列回归和卡方(列联表)分析。针对不同的学习目标(如R、BUGS等)列出了相应的重点章节;整理出贝叶斯统计中某些与传统统计学可作类比的内容,方便读者快速学习。本中提出的方法都是可操作的,并且所有涉及数学理论的地方都已经用实际例子非常直观地进行了解释。由于并不对读者的统计或编程基础有较高的要求,因此本书非常适合社会学或生物学研究者入门参考,同时也可作为相关科研人员的参考书。
本书从概率统计和编程两方面,由浅入深地指导读者如何对实际数据进行贝叶斯统计。全书分成三部分。第1部分为“基础篇:关于参数、概率、贝叶斯法则及R软件”;第2部分为“用于二元比例推断的基本理论”;第3部分为“广义线性模型的应用”。内容包括贝叶斯统计的基本理论、实验设计的有关知识、和以层次模型和马尔可夫链-蒙特卡罗方法(MCMC)为代表的复杂方法等;同时覆盖所有需要用到非贝叶斯方法的情况:t-检验、方差分析(ANOVA)和ANOVA中的多重比较法、多元线性回归、Logistic回归、序列回归和卡方(列联表)分析。针对不同的学习目标(如R、BUGS等)本书列出了相应的重点章节,整理出了贝叶斯统计中某些与传统统计学可做类比的内容,方便读者快速学习。 书中提到的方法都是可操作的,并且所有涉及数学理论的地方都已经用实际例子非常直观地进行了解释。由于并不对读者的统计或编程基础有较高的要求,因此本书非常适合作为社会学或生物学研究者的入门参考书,同时也可作为相关科研人员的参考书。 Doing Bayesian Data Analysis: A Tutorial with R and BUGS, 1John K. KruschkeISBN: 9780123814852Copyright 2011 by Elsevier. All rights reserved.Authorized Simplified English reprint edition published by the Proprietor.Copyright 2015 by Elsevier (Singapore) Pte Ltd and China Machine Press.All rights reserved.Published in China by China Machine Press under special arrangement with Elsevier (Singapore) Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR, Macao SAR and Taiwan. Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to civil and criminal penalties.本书英文影印版由爱思唯系教育集团授予机械工业出版社在中国(不包括香港、澳门特别行政区以及台湾地区)出版与发行。未经许可之出口,视为违反著作权法,将受法律之制裁。 本书封底贴有Elsevier防伪标签,无标签者不得销售。 引进版权登记号:01-2014-2547号。
随手扫一扫~了解多多